Lithium effects on circadian rhythms in fibroblasts and suprachiasmatic nucleus slices from Cry knockout mice.
نویسندگان
چکیده
Lithium is widely used as a treatment of bipolar disorder, a neuropsychiatric disorder associated with disrupted circadian rhythms. Lithium is known to lengthen period and increase amplitude of circadian rhythms. One possible pathway for these effects involves inhibition of glycogen synthase kinase-3β (GSK-3β), which regulates degradation of CRY2, a canonical clock protein determining circadian period. CRY1 is also known to play important roles in regulating circadian period and phase, although there is no evidence that it is similarly phosphorylated by GSK-3β. In this paper, we tested the hypothesis that lithium affects circadian rhythms through CRYs. We cultured fibroblasts and slices of the suprachiasmatic nucleus (SCN), the master circadian pacemaker of the brain, from Cry1-/-, Cry2-/-, or wild-type (WT) mice bearing the PER2:LUC circadian reporter. Lithium was applied in the culture medium, and circadian rhythms of PER2 expression were measured. In WT and Cry2-/- fibroblasts, 10mM lithium increased PER2 expression and rhythm amplitude but not period, and 1mM lithium did not affect either period or amplitude. In non-rhythmic Cry1-/- fibroblasts, 10mM lithium increased PER2 expression. In SCN slices, 1mM lithium lengthened period ∼1h in all genotypes, but did not affect amplitude except in Cry2-/- SCN. Thus, the amplitude-enhancing effect of lithium in WT fibroblasts was unaffected by Cry2 knockout and occurred in the absence of period-lengthening, whereas the period-lengthening effect of lithium in WT SCN was unaffected by Cry1 or Cry2 knockout and occurred in the absence of rhythm amplification, suggesting that these two effects of lithium on circadian rhythms are independent of CRYs and of each other.
منابع مشابه
Lithium Impacts on the Amplitude and Period of the Molecular Circadian Clockwork
Lithium salt has been widely used in treatment of Bipolar Disorder, a mental disturbance associated with circadian rhythm disruptions. Lithium mildly but consistently lengthens circadian period of behavioural rhythms in multiple organisms. To systematically address the impacts of lithium on circadian pacemaking and the underlying mechanisms, we measured locomotor activity in mice in vivo follow...
متن کاملDistinct and separable roles for endogenous CRY1 and CRY2 within the circadian molecular clockwork of the suprachiasmatic nucleus, as revealed by the Fbxl3(Afh) mutation.
The circadian clock of the suprachiasmatic nucleus (SCN) drives daily rhythms of behavior. Cryptochromes (CRYs) are powerful transcriptional repressors within the molecular negative feedback loops at the heart of the SCN clockwork, where they periodically suppress their own expression and that of clock-controlled genes. To determine the differential contributions of CRY1 and CRY2 within circadi...
متن کاملHarmine lengthens circadian period of the mammalian molecular clock in the suprachiasmatic nucleus.
The circadian clock is a cell-autonomous endogenous system that generates circadian rhythms in the behavior and physiology of most organisms. We previously reported that the harmala alkaloid, harmine, lengthens the circadian period of Bmal1 transcription in NIH 3T3 fibroblasts. Clock protein dynamics were examined using real-time reporter assays of PER2::LUC to determine the effects of harmine ...
متن کاملCryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus.
Cryptochrome (Cry) 1 and Cry2 are regarded as critical components for circadian rhythm generation in mammals. Nevertheless, cultured suprachiasmatic nucleus (SCN) of neonatal Cry double deficient (Cry1(-/-)/Cry2(-/-)) mice exhibit circadian rhythms that damp out in several cycles. Here, by combining bioluminescence imaging of Per1-luc and PER2::LUC with multielectrode recording, we show develop...
متن کاملNeuropeptide Y attenuates NMDA-induced phase shifts in the SCN of NPY Y1 receptor knockout mice in vitro.
Neuropeptide Y (NPY) blocks the effect of light on the mammalian circadian clock during the subjective night. The present study explores the role of the NPY Y1 receptor in this interaction. The effect of NPY when co-applied with NMDA, a glutamate agonist that can mimic the effect of light, was examined in NPY Y1-/- mice (background strain 129SVXBalb/c) using electrophysiology. Cells in the supr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience letters
دوره 619 شماره
صفحات -
تاریخ انتشار 2016